Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis
نویسندگان
چکیده
Nicorandil, an adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel opener, has been shown to exert a significant protective effect against ischemic heart injury. In the present study, we investigated the anti-apoptotic effects of nicorandil on rat mesenchymal stem cells (MSCs) subjected to hypoxia and serum deprivation (H/SD), as well as the potential underlying mechanisms. Apoptosis was induced in the MSCs by exposure to H/SD, and the apoptotic rates and reactive oxygen species (ROS) levels were determined by flow cytometry. The mitochondrial inner membrane potential was measured using the membrane-permeable dye, JC-1. Western blot analysis was used to measure the levels of Akt, Bcl-2, Bax, cytochrome c and cleaved caspase-3. The cell proliferative ability was assessed using the cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assay. The results revealed that H/SD-induced apoptosis was significantly attenuated by treatment with nicorandil in a concentration-dependent manner. Moreover, nicorandil markedly reduced the levels of ROS which were induced by exposure to H/SD, and increased the stability of mitochondrial membrane potential and the Bcl-2/Bax ratio, while it concomitantly decreased the H/SD-induced cleavage of caspase-3 and the release of cytochrome c. Treatment with the phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, abolished the beneficial effects of nicorandil on the MSCs. In conclusion, the findings of the present study indicate that nicorandil exerts protective effects against MSC apoptosis induced by H/SD and that these effects are mediated through the PI3K/Akt, mitochondrial and ROS signaling pathways.
منابع مشابه
Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملBerberine protects mesenchymal stem cells against hypoxia-induced apoptosis in vitro.
Bone marrow mesenchymal stem cells (MSCs) have the potential to be used in the cellular therapy of solid organs. However, tissue regeneration is limited by the death of transplanted cells. One of the main mechanisms of stem cell death in transplanted organs is through ischemia. In the present study, we sought to investigate whether a plant-derived antioxidant, berberine (BBR), could protect MSC...
متن کاملTrimetazidine protects umbilical cord mesenchymal stem cells against hypoxia and serum deprivation induced apoptosis by activation of Akt.
BACKGROUND Mesenchymal stem cell (MSC) transplantation is a promising therapy for cardiac repair. However, the efficacy is limited by the poor viability of MSCs in the infarcted heart. Recent findings have implicated that trimetazidine (TMZ) enhanced the survival of the stem cells under various conditions. However, as the stem cells in these studies were animal-derived, little information is av...
متن کاملCSE/H2S system protects mesenchymal stem cells from hypoxia and serum deprivation‑induced apoptosis via mitochondrial injury, endoplasmic reticulum stress and PI3K/Akt activation pathways.
Mesenchymal stem cells (MSCs) have the potential to facilitate cardiac repair following acute myocardial infarction. However, MSC therapy is limited by apoptosis of the stem cells following transplantation. Hydrogen sulfide (H2S) has recently been proposed as an endogenous mediator of cell apoptosis in various systems. The aim of the present study was to investigate the mechanism underlying the...
متن کاملIdentification of MicroRNAs Involved in Hypoxia- and Serum Deprivation-Induced Apoptosis in Mesenchymal Stem Cells
In recent years, the understanding that regeneration progresses at the level of the myocardium has placed stem cell research at the center stage in cardiology. Despite an increasing interest in cell transplant research, relatively little is known about the biochemical regulation of the stem cell itself after transplantation into an ischemic heart. We demonstrated here, using rat mesenchymal ste...
متن کامل